Public Services and Procurement Canada
Symbol of the Government of Canada

Important notice

The Guide du rédacteur has been archived and won't be updated before it is permanently deleted.

For the most up-to-date content, please consult Clés de la rédaction, which combines content from the Guide du rédacteur and Clefs du français pratique. And don't forget to update your bookmarks!

Search Canada.ca

2.3.3 Fractions décimales

Les fractions décimales sont normalement écrites en chiffres.

a) Signe décimal

Le signe décimal en français est la virgule. Elle n’est ni précédée ni suivie d’une espace. C’est l’usage que recommandent l’ACNOR, l’ISO, l’AFNOR et le BNQ.

Les décimales ne sont jamais séparées de l’unité. On écrit donc :

  • 1,50 m (et non 1 m,50 nim 50)
  • 3,25 km (et nonkm,25 nikm 25)

b) Emploi du zéro

Lorsque le nombre est inférieur à un, la virgule décimale doit être précédée d’un zéro :

  • 0,55 kg
  • 0,767 mm
  • 0,1 kPa

Placé après le signe décimal, le zéro ajoute un élément de précision utile aux statisticiens. En effet, dans l’exemple suivant :

  • Les installations génératrices ont fourni 15,0 % de toute l’énergie produite pendant l’année.

l’expression 15,0 % signale que le chiffre réel de production est compris entre 14,96 et 15,04 %, alors que 15 % signifierait que le chiffre réel se situe entre 14,6 et 15,4 %.

La pratique de Statistique Canada est de mettre le zéro après la virgule dans les tableaux (presque toujours publiés en présentation bilingue), mais de le supprimer lorsqu’il est évident que les calculs, dans les textes, ont été poussés à deux ou trois décimales.

c) Arrondissement des fractions

Dans un texte courant, il n’y a pas lieu de pousser une fraction jusqu’à sa dernière décimale. Cette recherche de la précision absolue est d’ailleurs impossible pour les fractions dites périodiques (3/11 ~ 0,272727…; 2/13 ~ 0,153846153846…; 7/11 ~ 0,636363…), où les mêmes groupes de chiffres reviennent indéfiniment dans le même ordre.

L’Association canadienne de normalisation recommande de conserver un nombre de chiffres significatifs de la partie décimale selon la méthode suivante :

  • Lorsque le premier chiffre supprimé est inférieur à cinq, le dernier chiffre retenu reste inchangé. Par exemple, 3,141 326 arrondi à quatre chiffres devient 3,141.
  • Lorsque le premier chiffre supprimé est supérieur à cinq, ou lorsque c’est un cinq suivi d’au moins un chiffre différent de zéro, le chiffre que l’on retient est augmenté d’une unité. Par exemple, 2,213 72 arrondi à quatre chiffres devient 2,214. Et 4,168 501 arrondi à quatre chiffres devient 4,169.
  • Lorsque le premier chiffre supprimé est cinq, et qu’il n’est suivi que de zéros, le chiffre que l’on retient est augmenté d’une unité s’il s’agit d’un chiffre impair, et reste inchangé dans le cas d’un chiffre pair. Par exemple, 2,35 arrondi à deux chiffres devient 2,4. Et 2,45 arrondi à deux chiffres devient aussi 2,4.